The fits for f(v) and g(v) define the (e-p-v) equation of state and allow calculation of Hugoniots centered on, and isentropes passing through points on the p=0 isobar in the (p-v) plane. The discontinuous change in slope of the g(v) function at v=1.01316 cc/g is manifest in the shape of these curves in the neighborhood of this volume.

V. CALCULATIONS

Construction of Hugoniot Curves and Isentropes

The Hugoniot curves centered on p=0 at -20° C, 25° C, 158.5° C, and 256° C were calculated directly with Eq. 14. The isentropes passing through p=0 at 25° C, 158.5° C, 256° C, and 296° C were constructed by integrating Eq. 15 numerically with a Runge-Kutta technique. The -20° C, 158.5° C, and 256° C Hugoniots and the 296° C isentrope are shown in Fig. 4. The 25° C Hugoniot and the 25° C and 296° C isentropes are shown in Fig. 5.

Calculation of Temperature

Equation 9 was used to calculate the temperature along the isentropes passing through $25^{\circ}C$ and $296^{\circ}C$ on the atmospheric isobar. The values of temperature along these isentropes are listed in Table II. Calculation of temperature at points where isentropes intersect the $25^{\circ}C$ Hugoniot defines values of shock temperature along this Hugoniot curve. The point of intersection ($T_{c} = 522.1^{\circ}C$, $P_{c} = 58$ kbar, $V_{c} = 0.661$ cc/g) of the $296^{\circ}C$ isentrope and the $25^{\circ}C$ Hugoniot is the highest point on the $25^{\circ}C$ Hugoniot where shock temperature can be calculated with the present data. The temperature on the $25^{\circ}C$ Hugoniot below 58 kbar can be calculated with the isentropes lying to the left of the $296^{\circ}C$ isentrope. The temperature where the $256^{\circ}C$ isentrope intersects the Hugoniot is $456.7^{\circ}C$, and the temperature where the $158.5^{\circ}C$ isentrope intersects the Hugoniot is $291.5^{\circ}C$.

It is not possible to calculate temperature on the $25^{\circ}C$ Hugoniot above 58 kbar without making further assumptions. The temperature along the Hugoniot above 58 kbar was calculated with constant C_v rather than by extrapolating the low pressure data further. The equation for shock temperature above a point (T_c, v_c) on a Hugoniot centered at $(p_c = 0, v_c)$,